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Abstract
Background and aims: Intermuscular lipolysis disorder plays an important role in insulin resistance and diabetes mellitus and perilipin 
PLIN5 and PLIN3 are the key proteins in regulating muscle cellular lipolysis. Therefore, the purpose of this study was to examine the 
relationship between the expression of PLIN3 and PLIN5 protein following endurance training in streptozotocin (STZ) rats.
Methods: A number of 24 male Wistar rats were randomly divided into low endurance training group (n = 8), high-intensity training group 
(n = 8), and control group (n = 8). Diabetes was induced in every rat by STZ injection. Three days after injection, the blood samples were 
taken from the cut tip of the tails of the mice and animals with blood glucose greater than 300 mg/dL were considered diabetic. The training 
program included eight weeks of aerobic training at different intensities. Training in high- and low-intensity groups included 22-25 and 5-8 
m/min of training. Finally, one-way analysis of variance (ANOVA) and correlation was used to determine the significance of the differences 
between variables, followed by utilizing Tukey’s post-hoc test for significance.
Results: The comparison between the groups by ANOVA showed significant differences in PLIN3 (P = 0.0006) and PLIN5 (P = 0.012). 
The results of Tukey post hoc test also demonstrated a statistical difference between the mean values of diabetic control group and 
high-intensity endurance group regarding PLIN3 (P = 0.01) and PLIN5 (P = 0.009), but no significant increase was observed in the low-
intensity exercise group as compared to the control group (PLIN3, P = 0.067 & PLIN5, P = 0.44). As regards insulin resistance, there was 
a significant difference among the three groups (P = 0.0001). Eventually, the result of the correlation between PLIN3 and PLIN5 showed 
similar enhancement by increasing the intensity (P = 0.0026).
Conclusion: According to research results, high-intensity endurance training increased the expression of PLIN3 and PLIN5 in diabetic 
specimens and PLIN3 and PLIN5 followed a similar increase pattern in high-intensity training.
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Introduction 
Diabetes is characterized by excessive fat accumulation in 
the form of triglycerides in non-adipose tissues such as liver, 
skeletal muscle, and heart (1). In addition, intramuscular 
triglyceride (IMTG) is associated with insulin resistance 
in diabetic patients (2). The concept of “lipid-induced 
skeletal muscle insulin resistance” demonstrates a 
correlation between IMTG concentrations and insulin 
resistance (3), as well as the relationship between IMTG 
and insulin resistance in individuals with low-oxidative 
capacity and low mobility. The low levels of IMTG are 
observed by increased insulin resistance as well (4). Recent 
evidence has shown that cytosolic regulating lipid droplet 
(LD) proteins play crucial roles in important cellular 
processes such as cellular energy homeostasis lipid storage 
(5). The PLIN family including PLIN1 to PLIN5 is the 
best-characterized family of LD proteins (6). The results of 

some studies showed that the content of perilipins in type 
1 muscle fibers is more than type 2 muscle fibers (7,8). 
Similarly, the IMTG alternate in exercise conditions is 
independent of the changes in PLIN protein in diabetic 
patients who may represent the potential role of PLIN 
proteins in insulin resistance. According to previous 
studies, PLIN3 and PLIN5 are used in intensive training 
and moderate-intensity exercises (8,9), while some studies 
indicated that the effect of training exercises on the 
amount of IMTG is unclear. 

Although some studies reported an increase in the 
content of IMTG in obese patients with type 2 diabetes 
(10,11), other studies failed to report these changes (4,11). 
Furthermore, it is found that training with different 
intensities has different effects on the muscle LD (12,13), 
while Shepherd et al demonstrated that high-intensity 
training improves IMTG in the same way (8). Different 
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expressions of skeletal muscle PLIN protein are reported 
in the training as well.

PLIN3 and PLIN5 show engagement as the potential 
mediators of fatty acid or LD interaction with skeletal 
muscle mitochondria (14) since they are both exchangeable 
LD proteins that interact with intracellular organelle (14). 
Moreover, PLIN3 has a known role in vesicular moving 
in cell culture models (15) and PLIN5 is localized to 
mitochondria in skeletal muscle models. However, issues 
such as the nature of their association and what might 
occur under lipolytic conditions are unknown (14). PLIN5 
is regarded as an LD protein, which is highly expressed 
in oxidative tissue (16, 17) and regulates lipid. Previous 
researches show that the size of LD is related to PLIN5 
expression and the excess accumulation of intramuscular 
fat is associated with such conditions as insulin resistance 
and being afflicted with type 2 diabetes (18).

The intensity of physical activity is considered an 
important factor for diabetic patients (7). Evidence 
suggests that more IMTG is consumed and replenished 
in high-intensity interval training. Additionally, PLIN3 
and PLIN5 proteins play a role in the hydrolysis of 
triglycerides stored in muscle LDs and the reduced 
turnover of IMTG is related to insulin resistance. On the 
other hand, considering that endurance training is able to 
increase IMTG, the current study sought to investigate the 
relationship between the expression of PLIN3 and PLIN5 
proteins following endurance training in streptozotocin 
rats.

Materials and Methods
The current research is an experimental in vitro study. A 
total of 24 eight-week male Wistar rats were obtained from 
the Pasteur Institute Animal Care Center in Karaj, Iran. 
After transferring the mice to the laboratory, they were 
randomly divided into diabetic control, low-intensity, and 
high-intensity endurance training. Throughout the study, 
animals were maintained in normal conditions (12L/12D 
at 23±3°C) and fed with a standard laboratory diet, 
received enough water, and were housed under the same 
maintenance and laboratory conditions. After a few days, 
animals were weighed and then anesthetized with ether, 
and finally, received a single intraperitoneal injection of 
streptozotocin (STZ) at a dose of 55 mg/kg body weight. 
Further, 9.5 mg citrate buffer with a pH of 4.5 (sterile) 
was added per 1 g STZ to prepare the solution and then 
a yellow solution was obtained after dissolving. Prior to 
STZ injection, a drop of blood was taken from the cut 
tip of the tail of the animal in order to determine STZ 
injection dose. Using blood glucose (BG) test strip and 
BG meter, fasting blood sugar level was then measured, 
followed by performing the injection. Next, the blood 
drop was taken through the tail-tip amputation method 
and the blood sugar level of the animal was measured as 
well. Accordingly, those animals with BG greater than 

300 mg/dL were considered diabetic. After one week and 
getting familiar with the laboratory environment, rats 
were randomly assigned to two training groups and one 
control group. Then, the rats became familiar with how to 
run on a treadmill for one week at a speed of 3 m/min for 
15-20 minutes. The control group rats participated in no 
training, but in experimental groups, the training protocol 
was performed during eight weeks for four days (per week) 
for 30 minutes as follows.
•	 Low-intensity group. Eight rats received training 

at a speed of 5-8 m/min equivalent to 50%-60% 
Vo2max.

•	 High-intensity group. A number of 8 rats received 
training at a speed of 22-25 m/min equivalent to 
80% Vo2max. 

After performing the training protocol, all the rats were 
weighed 48 hours after the last training session program and 
then the rats were anesthetized using the intraperitoneal 
injections of ketamine (90 mg/kg) and xylazine (10 mg/
kg). Next, the blood samples (5 cc) were directly extracted 
from the hearts of the mice and entered into sterile tubes, 
and after one hour of room temperature storage, serum 
isolation was conducted using centrifugation method (for 
10 minutes at 2500 rpm), and the isolated serum was 
frozen and kept in nitrogen at -180°C. In the post-test 
stage, all the collected blood samples were withdrawn in 
one day from the refrigerator and underwent the given 
tests based on the related protocol. Glucose levels were 
measured by Germany glucometer by cutting the tip of the 
tail. Further, the plasma levels of insulin were estimated by 
ELISA kit (rhizosphere, China with 5 microns per milliliter 
sensitivity and the coefficient of variation of 36%). Finally, 
insulin resistance was calculated applying the homeostatic 
model assessment-insulin resistance (HOMA-IR) method 
by measuring insulin and fasting glucose according to the 
following formula (19).

HOMA-IR=fasting insulin (ng/mL)×fasting BG (mg/
dL)/22.5

Similarly, to analyze the soleus muscle protein expression 
of perilipin 5 by western blot, approximately 50 mg of each 
soleus skeletal muscle piece was powdered with a pestle in 
liquid nitrogen and lysed using a 1 mL of phosphate-buffered 
saline. Tissue homogenates were centrifuged at 12 000 
rpm for 15 minutes at 4°C and supernatant was removed 
as well. The total protein content of the tissue extract was 
determined by the Bradford method using bovine serum 
albumin. Accordingly, 50 μg of protein was collected per 
sample, separated by SDS-PAGE in 8% polyacrylamide, 
and electrotransferred to polyvinylidene difluoride 
membranes. Next, the membranes were incubated in the 
blocking solution (5% milk) at room temperature for 2 
hours. The membranes were then incubated with primary 
antibodies including PLIN3 (TIP47 Antibody (B-3)  200 
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µg/mL, Santa Cruz) and PLIN5 (guinea pig polyclonal, 
Progen, #GP31, Heidelberg, Germany), and then the 
peroxidase-conjugated secondary antibody was directed 
against the primary antibody. Ultimately, the membranes 
were developed by an enhanced chemiluminescence 
western blot detection system.

Data were reported as means ± standard error (SE) 
values. To compare the groups, all dependent variables 
were analyzed by one-way ANOVA. Furthermore, Tukey 
post hoc test was used to determine significant differences 
among the groups. Data analysis was performed using 
SPSS software, version 21 and statistical significance was 
set at P < 0.05.

Results
At first, there was no significant difference between the 
weighted averages (Table 1). No significant difference 
was observed between the weights in the control and 
training groups (P = 0.47) as well (Table 2). However, the 

results of one-way ANOVA (Table 3) showed a significant 
difference in PLIN3 (P = 0.01), PLIN5 (P = 0.0122), 
glucose (P = 0.001), insulin (P = 0.001), and insulin 
resistance (P = 0.0001). As shown in Table 4 and Figure 
1, the results of Tukey post-hoc test also indicated that 
high-intensity endurance training had a significant effect 
on PLIN3 expression, (P = 0.01) while no significant 
increase in PLIN3 was observed in low-intensity training 
compared to control group (P = 0.67). Based on the results 
of Tukey post-hoc test, high-intensity endurance training 
demonstrated a significant impact on PLIN5 expression 
(P = 0.01). No significant increase in PLIN5 was observed 
in low-intensity training when compared to the control 
group (P = 0.44); the related details are presented in Table 
5 and Figure 2. Table 6 shows the Tukey analysis of glucose, 
insulin serum levels, and insulin resistance. Table 7 and 
Figure 3 also represent the correlation between PLIN3 and 
PLIN5.

Table 1. Basic characteristics

Values Diabetic Control Group (n=8) Low-intensity Diabetic Group (n=8) High-intensity Diabetic Group (n=8)

Weight before intervention (g)    201.10±14.700 271.62±24.017 182.90±17.026

Weight after intervention (g) 191.50±15.464 186.50±42.578 15.366±172.88

Glucose before interventions (mg/dL) 450.68±25.38 466.66±20.78 431.6±25.3

Table 2. The results of covariance analysis, body mass changes after eight weeks of training with different intensities

Variable Group
Diabetic Control Group 

(n=8)
Low-Intensity Diabetic 

Group (n=8)
High-Intensity Diabetic 

Group (n=8)
F

P Between 
Groups

Weight (kg)
Pre-test 201.10±14.700 271.62±24.017 182.90±17.026

0.84 0.47Post-test 191.50±15.464 186.50±42.578 172.88±15.366

P-inside group 0.75 0.51 0.17

Table 3. The Results of ANOVA analysis of PLIN3, PLIN5, Insulin, and HOHA-IR

Variables

Groups
ANOVAHigh-Intensity Diabetic Group 

(n=8)
Low-Intensity Diabetic Group 

(n=8)
Diabetic Control 

Group (n=8)

Mean ± SD Mean ± SD Mean ± SD F P

PLIN3 (arbitrary) 6196±2490 4035±2402 3400.56±2497.21 5.54 0.0006

PLIN5 (arbitrary) 7294.61±1283.85 5292.22±2362.30 3400.56±2497.21 5.54 0.012*

Glucose (mg/dL) 341.50±91.905 0.1213±0.009 557.75±158.847 18.892 0.001*

Insulin 0.1213±0.009 0.1725±0.0310 0.1925±0.036 211.35 0.001*

HOMA-IR 1.823±0.4415 3.808±0.6883 4.833±1.227 25.84 0.0001*

ANOVA: Analysis of variance; HOMA-IR: The homeostatic model assessment-insulin resistance; *Significant at P≤0.05.

Table 4. The results of Tukey post hoc test on the expression of PLIN3

Group Group Different Mean P

High-intensity diabetic group (n=8)
Diabetic control group (n=8) 992.5 0.01*

Low-intensity diabetic group (n=8) 2157 0.22

Low-intensity diabetic group (n=8) Diabetic control group (n=8) 1326 0.67

*Significant at P≤0.05.
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Discussion
Based on the results of this study, high-intensity exercise 
significantly increased the expression of PLIN3 and 
PLIN5 compared to the diabetic control group and PLIN 
protein increasing by high-intensity endurance training as 
well. STZ-induced diabetes causes muscle atrophy due to 
the increased levels of glucose and a decrease in insulin 
levels (20,21). Moreover, muscle atrophy reduces protein 
synthesis and increases protein degradation in skeletal 
muscle (22). It seems that high-intensity training has a 
stimulatory effect to compensate for PLIN3 and PLIN5 
protein synthesis (23). Minnaard et al also highlighted 
the benefits of training on PLIN5 protein for the muscle 
rate (24). The increased PLIN3 and PLIN5 expressions 
were reported in animal (14) and human (25) studies 
after training. It was reported that PLIN5 mitochondria 
increase after 30 minutes of high-intensity contraction, as 
well as fatty acid (FA) transport and metabolism in the 
muscle tissue (14). Similarly, Mason et al observed the 
accumulation of PLIN5 and PLIN3 protein content in 
Vastus lateralis muscle after 60 minutes of high-intensity 
training (26). Another study also showed an increase 
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 Figure 1. The effect of training on the expression of PLIN3 in soleus muscle.
Note. D: Diabetic control; T-L: Low-intensity exercise; T-H: High-intensity 
exercise.

Figure 1. The effect of training on the expression of PLIN5 in soleus muscle.
Note. D: Diabetic control; T-L: Low-intensity exercise; T-H: High-intensity 
exercise.

Figure 3. The relationship between PLIN3 and PLIN5 in different intensity.
Note. D: Diabetic control; T-L: Low-intensity exercise; T-H: High-intensity 
exercise.

Table 5. The results of Tukey post hoc test on the expression of PLIN5

Group Group Different Mean P

High-intensity diabetic group (n=8)
Diabetic control group (n=8) 3492.85 0.01*

Low-intensity diabetic group (n=8) 2175.71 0.12

Low-intensity diabetic group (n=8) Diabetic control group (n=8) 1317.142 0.44

*Significant at P≤0.05.
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in PLIN5 in diabetic patients after 6 months of high-
endurance training (27).

Cell culture studies demonstrate that PLIN3 and PLIN5 
expression recruits adipose triglyceride lipase (ATGL) and 
its coactivator, as the comparative gene identification-58 
(CGI-58), to the LD surface under basal conditions. It 
is believed that PLIN5 phosphorylation releases CGI-
58 to bind ATGL to stimulate lipolysis in response to 

Table 6. The results of Tukey post hoc analysis of serum insulin and glucose levels

Group Group
Insulin Glucose

Different Mean Significant Different Mean Significant

High-intensity diabetic group (n=8)
Diabetic control group (n=8) 0.0712 0.000* 236.25 0.001*

Low-intensity diabetic group (n=8) 0.0512 0.011* 155.5 0.046*
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protein kinase A activation (18). Both PLIN3 and PLIN5 
co-precipitated with CGI-58 at rest and following the 
contraction. MacPherson et al found that PLIN3 and 
PLIN5 proteins work together to regulate lipolysis (23). 
It seems PLIN5 regulates oxidative LD hydrolysis and 
controls the local FA flux to protect mitochondria against 
excessive exposure to FA during physiological stress, and 
therefore, reduces the insulin resistance (28).

The results of the present study revealed that low-intensity 
endurance training led to an increase in the expression of 
PLIN3 and PLIN5, but this increase was not significant 
while in the study by Mason et al, a significant increase 
was detected in endurance training with 60% Vo2max (27).
In contrast, no significant increase was observed in PLIN3 
and PLIN5 by low-intensity interval training, and it is 
assumed that a limited number of muscle fibers are used 
by this training due to less consumption of IMTG (27).

The comparison between endurance training exercises 
and high-intensity interval training showed that the latter 
leads to more accumulation and greater fragmentation of 
IMTG. It also increases the expression of PLIN3 and PLIN5 
and probably maintains a low concentration of muscle FA 
metabolites, leading to improved insulin sensitivity in 
endurance training (28). Our findings further indicated 
that insulin resistance, along with low-intensity and high-
intensity endurance activities in diabetic rats, decreased 
significantly. Similarly, the destruction of pancreas by STZ 
leads to a sharp decrease in insulin levels, and owing to 
hyperglycemia (20), the loss of muscle mass is observed in 
the models of a severe decrease in insulin (30). Frequent 
impulses during training are also shown to coordinate the 
enzymes associated with the metabolism of IMTG (31), 
because of which endurance-trained athletes have high 
amounts of IMTG but are insulin sensitive. Further, the 
increased synthesis rates of IMTG were associated with 
decreased ceramide and diacylglycerol concentration (14). 
These data suggest that IMTG may protect against insulin 
resistance during increased free FA uptake (32).

Conclusion
In general, the obtained data demonstrated that the levels 
of PLIN3 and PLIN5 increase in response to high-intensity 
endurance training and thus decrease insulin resistance. 
Furthermore, the expression of the skeletal muscle PLIN5 
protein relies on the intensity of training and both of these 
proteins have almost an ascending trend.
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